
INTRODUCTION

Recent progresses have provided exceptional op-
portunities to identify prognostic and predictive
markers of efficacy of cancer therapy. Genetic
markers can be used to identify patients who will
benefit from therapy, exclude patients at high risk
of severe toxicity, and adjust dosing1.

Pharmacogenomics and Pharmacogenetics
(PGs) testing may support clinicians to identify pa-
tients who are less likely to benefit from expensive

drugs, those who are susceptible to severe treat-
ment related toxicities at standard doses, and also
reduce the delay of the patient receiving perhaps
the correct alternative treatment2. This is all more
appealing in cancer therapy because many
chemotherapeutic agents have a narrow therapeu-
tic index and not uncommonly result in life threat-
ening adverse events3.

The utility of PGs extends beyond cancer ther-
apy in the clinic. It has the potential to facilitate
the identification of drug targets, accelerate the dis-
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In this review, we highlight the most recent genomic markers promises for both prognostic as well
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include the inherent low frequency of many of these markers, the lengthy validation process through
trials, as well as legislative and low economic budgets. 
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covery and development of several drugs4,5. Neo-
plastic cells frequently acquire mutations in onco-
genes, which can confer more sensitivity or
resistance to drugs6. A better understanding of mo-
lecular processes and somatic mutations of tumors
have led to an increasing number of targeted agents
being discovered and developed7. The effective
and appropriate use of expensive cytotoxic and tar-
geted agents should ultimately translate into more
cost effective treatments and eventually reduce
overall healthcare costs. To evaluate the progress
of PGs thus far, a simplistic classification of the
most and examples are cited. 

In particular, here we highlight the advances in
the identification of both germline and somatic mu-
tations, and the understanding of their predictive
and prognostic values, in order to assess personal-
ized treatment, a key goal of today’s oncology8. 

Although, there still exist many challenges
going forward: The pace of identifying such mark-
ers has not been harmonized by the speed of vali-
dation studies. Patient and physician education
remains much to be improved upon9. Improvement
in legislation and administrative processes is still
ongoing. Nonetheless, the future for the develop-
ment of PGs in cancer therapy remains promising. 

MARKERS FOR PREDICTIVE 
RESPONSE TO CHEMOTHERAPY 

The clinical application of PGs markers has been
most successful in treatment response prediction.
To date, there are several FDA approved anticancer
drugs with validated predictive markers for treat-
ment response (Table 1). These predictive markers
are either acquired or somatic genomic alterations
frequently characterized by DNA base mutations.
In addition, neoplastic cells are often characterized
by other genetic alteration as gene copy numbers
changes, chromosomal rearrangement and epige-
netic variations.

Intense clinical responses may be allowed
when these tumor cells are treated with drugs tar-
geting oncogenes to which tumors are dependent
to for their growth, survival, and metastatic poten-
tial10.

The most documented example is the epider-
mal growth factor receptor (EGFR) tyrosine kinase
domain mutation and response to gefitinib and er-
lotinib in adenocarcinoma lung cancer. Differen-
tial responses and outcomes to targeted agents has
led to the recognition of phenotypic characteristics
(i.e. non-smokers, female), and the validation of
genetic markers11. Somatic mutations in EGFR, in-
cluding deletion mutations in exon 19 and substi-
tution of Leucine to Arginine at codon 858
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(L858R) in exon 21, have been identified for their
ability to predict sensitivity to tyrosine kinase in-
hibitors (e.g. gefitinib or erlotinib)12. On the other
hand, it has also been shown that the T790M mu-
tation at exon 20 is the most commonly found mu-
tation that confers resistance to therapy12.

In contrast, the clinical utility of germline
markers predicting for treatment responses are less
well established. One of the most extensively stud-
ied examples is the relation between CYP2D6 ac-
tivity and outcome13. CYP2D6 is responsible for
the biotransformation of tamoxifen to its active
metabolite, endoxifen. Decreased CYP2D6 activ-
ity, due to CYP2D6*10 polymorphism, was previ-
ously thought to be associated with poorer clinical
outcomes in breast cancer patients treated with ta-
moxifen in the adjuvant setting14. However, the re-
cent retrospective analyses of 2 large adjuvant
breast cancer trials, ATAC and B1-98, failed to es-
tablish a relationship between CYP2D6 polymor-
phisms and treatment outcome of patients treated
with tamoxifen15. Whether variation in the dose of
tamoxifen would affect the outcome is also still not
known. To complicate matters, rates of adherence
to hormonal therapy may affect tamoxifen efficacy.
In a prospective observational trial, CYP2D6 ex-
tensive metabolizers had higher discontinuation
rates at 4 months. The extensive metabolizers who
potentially may be more likely to benefit from ta-
moxifen were also puzzlingly more likely to stop
therapy early16,17.

Currently, it is still recommended that patients
who are tacking tamoxifen avoid potent CYP2D6
inhibitors (i.e. fluoxetine, clopidrogel etc)17. Al-
though the specific CYP2D6 test has been ap-
proved by the Food and Drug Administration
(FDA) for detection individual metabolizer status.
Although, the predictive value of CYP2D6 geno-
typing on tamoxifen outcome remains low, and
more validation studies are needed. 

MARKERS FOR PREDICTIVE TOXICITY
TO CHEMOTHERAPY

There are many anti-cancer molecules with labels
reporting germline pharmacogenetic markers of
toxicity (Table 1). The majority of these polymor-
phisms were discovered by a candidate gene ap-
proach, where prior knowledge of pathophysiology,
pharmacokinetics, pharmacodynamics and tumor
biology is required. In recent years, the examina-
tion of population variation in all the annotated
genes in the human genome has become possible18.
Through statistical analyses and probability calcu-
lations, candidate genes can be identified without
prior knowledge of the association



Some of these may also affect efficacy, for ex-
ample, thiopurine methyltransferase (TPMT) poly-
morphisms might affect 6-mercarptopurine (6-MP)
response19. Even when treated at 10% of the stan-
dard dose of 6-MP, patients homozygous for TPMT
variants have similar or superior survival compared
with patients with at least one wild-type allele. 

Even in patients who experience severe toxic-
ity, the complex pharmacodynamic pathways may
mean that the purported molecular marker identi-

fied may not be the only reason for the observed
toxicity. Dihydropyrimidine dehydrogenase*2A
(DPYD*2A) is the most common DPYD poly-
morphism associated with impaired DPD enzyme
activity. Up to 25% of patients treated with Fluo-
ropirimidine suffering from severe toxicity may
have DPYD*2A polymorphism. 

Although many polymorphisms for DPYD, 5,10-
methylenetetrahydrofolate reductase (MTHFR) and
thymidylate synthase (TYMS) have been identified
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GENE Polymorphism Molecular Drug Effect Ref
(nucleotide effect Response (R) 
translation) Toxicity (T)

GERMLINE MUTATIONS:
Cytochrome Various SNP Modify enzyme Cyclophosfa mid Inter-individual 13
P450 family activity Etoposide variability in 

Pharmacokinetics
CYP2D6* 10 Decrease enzyme Tamoxifen (T) Poor metabolizer 14

activity
TPMT*2, *3A, Various Decrease enzyme 6-MP (T) Hematopoietic 19
*3C Polymorphism activity Thioguanine Low expression

UGT1A TA repeats in Low expression Irinotecan (T) Severe 21, 22,
*28 and *6 5’ promoter Diarrhea 23

Neutropenia
MDR1 (C3435T) Low expression Various Drug resistance 49
TYMS 3 tandem repeats High expression 5-FU, Metatrexate Drug resistance 20
DPYD*2A IVS14+1G Decreease enzyme Fluoropyrimidine (T) Severe diarrhea 41, 42

activity neutropenia
MTHFR (C677T) and Decreased enzyme Metatrexate (T) Hematopoietic 20

(A1298G) activity

AQUIRED MUTATION:
c-KIT (T1982C) Constitutive Imatinib Desensitizes activity 1

(T81421A) signal activation in GIST
c-KIT Codon D816V ND Imatinib Good response 1

Semaxinib in t(8;21)-positive 
AML 

EGFR Codon L858R Constitutive Gefitinib (R) Good response 12
Del(G719A/C/S) signal activation Erlotinib in NSCLC 

EGFR Codon T790M ND Gefitinib Drug resistance 12
ABL T(9;22) Constitutive signal Imatinib Good response in CML 1

BCR/ABL fusion activation Dasatinib
gene Nilotinib

ABL T315I Imatinib Drug resistance 1  
M351T

RARα T(15;17) Block of maturation All Trans Retinoic (R) Good outcome 1
PML/RARα of Myeloid cells acid (ATRA) in AML-M3 subtypes
fusion gene

K-RAS Codon G12, G13 Cetuximab (R) good outcome 37, 38, 
Panitumumab in wild type 39

B-RAF Codon V600E Constitutive signal Vemurafenib (R) good outcome 33
in mutated V600

ALK Fusion gene Constitutive signal Crizotinib (R) Good outcome 28, 29
EML4/ALKa in NSCLC 

Table 1. Most common somatic and acquired mutation predictors for Response (R) and Toxicity (T) to anti-cancer drugs ap-
proved by the FDA. (www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm)

Abbreviations: TPMT = thiopurine methyltransferase; UGT1A1 = UDP-glucuronosyltransferase 1A1; MDR1 = multidrug re-
sistance 1; TYMS = thymidylate synthase; DPYD = DihydroPyrimidine Dehidrogenase; MTHFR = 5,10-methylene tetra hy-
drofolate reductase; EGFR = Epidermal Grow Factor Receptor; 5-FU = 5-fluorouracil; 6-MP = 6-mercaptopurine; AML = Acute
Myeloid Leukemia; NSCLC = Non-Small Cell Lung Cancer; CML = Chronic Myeloid Leukemia; EML4-ALK = Echinoderm
microtubule-associated protein-like 4 anaplastic lymphoma kinase.



and studied, these polymorphisms have relatively
modest or inconsistent associations with 5-fluo-
rouracil toxicity, and several studies have failed to
replicate the results. In order to assess the predictive
value of polymorphisms in Fluoropirimidine based
therapy a pharmacogenomics panel test were pur-
posed on DPYD, TYMS and MTHFR for severe tox-
icities related to fluorouracil treatment20. The
sensitivity of DPYD genotyping for overall toxicity
was low with a positive predictive value of hardly
half. The several proposed algorithm for 5-FU dosing
is still theoretical without clinical utility.

Ethnic variation of drug response is an impor-
tant factor that needs to be considered when a ge-
netic testing model is attempted to be replicated
across ethnic borders. The knowledge of the pre-
dominant polymorphisms and their respective fre-
quencies should be borne to mind. In Caucasian
populations, the UGT1A1*28 polymorphism is the
most common variant but this is present in only
1.2-5% of South East Asian and Pacific popula-
tions21,22. In East Asians, the predominant func-
tional polymorphism is UGT1A1*6, with a
reported allelic frequency of 13-23%23. Indeed, the
Japanese Ministry of Health and Welfare approved
the use of testing for both UGT1A1*28 as well as
UGT1A1*624. The application of testing for
UGT1A1*28 only would not be clinically relevant
in the Japanese (and other Asian) population.

Although the associations between germline
polymorphisms and treatment toxicities are well
established25, but they have not been used into rou-
tine clinical practice. 

PROGNOSTIC MARKERS 
TO GUIDE THERAPY

Drug treatment directed at specific drug targets
have created much enthusiasm in oncologic re-
search, and have accelerated the development of
several targeted anti-cancer molecules.

Under this new model, many confirmatory
phase III trials are designed with some form of en-
richment, in particular in tumors where somatic
biomarkers for response was established proof of
concepts, like lung, breast and colon (Berretta et
Al 2011).

Many predictive markers in oncology such as
EGFR mutation status, are found to have prognos-
tic impact as well, aiding physicians in making
clinical decisions for treatment or observation26. In
recent years, Crizotinib, an anaplastic lymphoma
kinase (ALK) inhibitor, has created much excite-
ment for its unprecedented treatment response rate
of greater than 70% in non-small cell lung cancer
(NSCLC). However, the incidence of NSCLC har-

boring the echinoderm microtubule-associated
protein-like 4 anaplastic lymphoma kinase
(EML4-ALK) fusion gene, the target for crizotinib,
in the unscreened population is low, with an esti-
mated incidence of 2-7%27,28. EML4-ALK in lung
cancer is known to be more prevalent in females
who are non-smokers and the adenocarcinoma
subtype29. The knowledge that EML4-ALK and
EGFR mutations are mutually exclusive has high
significance30. Patients who are EGFR mutation
negative with such phenotypic characteristics can
be the target of randomized clinical trials for crizo-
tinib, reducing the numbers needed to screen, and
accelerating the development of crizotinib and in-
creasing the chance of a successful trial. Vemu-
rafenib has similar success with V600E BRAF
mutation positive melanoma31, and both drugs
have transited with an accelerated pace from phase
I trials directly to phase III32,33.

Retrospective analyses of somatic mutations of
completed prospective randomized trials have led
to results that changed medical practice, for exam-
ple, the addition of cetuximab and panitumumab
to chemotherapy in patients who are KRAS wild
type resulted in longer overall survival34,35.
Prospective trials were designed thereafter with the
aim to confirm the findings36,37, although other
studies have shown conflicting results38,39. The rea-
sons for the discrepancies are not entirely clear.

In the retrospective analyses of previous trials
for biomarker validation, it might be that not all
the patients or samples may be available for analy-
sis. It is pertinent though, that the available cohort
of patients that are analyzed be representative of
all the patients in the study, ideally a sizable num-
ber, or the validity of the analysis may fall short
and be questioned. 

EVALUATION COSTS OF 
PHARMACOGENOMICS

The finite nature of healthcare budget requires
for treatments and biomarkers to be cost effec-
tive. Pharmacogenomics fields can potentially
reduce healthcare cost by allowing the clinician
identify patients that are most likely to benefit
from treatment, thus reducing unnecessary treat-
ment and minimize cost incurred during man-
agement of treatment related toxicities and
hospitalizations40. 

The prevalence of a marker is an important fac-
tor that needs to be considered when validation tri-
als are designed to determine clinical cost-
effectiveness. Many pharmacogenetic markers
have a low frequency in the population, making
difficult their validation and clinical implementa-
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tion. E relevant example is the allelic frequency of
DPYD*2A is only about 1.8% in European Cau-
casians and less than 1% in Asian populations41,42.
The majority, up to two-thirds, of patients who ex-
perienced severe treatment toxicity after 5-fluo-
rouracil do not have a molecular basis for DPYD
deficiency43.

The clinical integration of PGs  is often delayed
by the cost of testing or lack of reimbursement
from public or private insurers. Many countries es-
pecially developing ones, do not even have access
to pharmacogenetic testing.

Several methods to assess the quality of cost-
effectiveness, cost-utility and cost-benefit of PGs
tests have become available. A relevant example is
the National Institute for Health and Clinical Ex-
cellence (NICE). NICE forms a Diagnostic Advi-
sory committee, which stimulates Pharma and
Academic communities to produce a robust set of
data, including the design and data source, for eco-
nomic models of healthcare. In addition, NICE
serve to better quantify the potential benefits of
PGs testing in oncology44. However, limitations of
individual economic evaluation models include not
being able to capture important factors, such as,
willingness of the patient to pay, psychological im-
pact and patient preference. 

Study focusing on the genotyping cost are low.
It has been demonstrated that the mean calculated
cost per life-year gained by TPMT genotyping in
acute lymphoblastic leukemia patients treated
with 6-MP was 2100,00 €, based on genotyping
costs of 150€ per patient45. A more efficient PGs
test is often not necessarily the cheapest test, but
one that predicts more reliably the intended out-
come, and allows for selection of the optimal
treatment. With advances in technology, the cost
and time of genotyping have dramatically de-
creased, with eventual realization of the
“€20,00” per single polymorphisms46. In consid-
eration of the dropping cost of genotyping, the in-
corporation of genomic scans in the patient
evaluation becomes a dynamic and ongoing
process, that should be constantly checked and
updated by policy makers in accordance to the de-
preciating costs, to allow for more accessibility
for genotyping and its benefits as more evidence
becomes available.

CONCLUSIONS

The full application of PGs into clinical practice
will require dramatic changes in regulations, leg-
islative protection for privacy and reimbursement
policies. Several recent regulatory policies, pro-
viding guidelines for genomic data management,

pharmacogenetic testing, and designing of adap-
tive clinical trials, have been implemented to sup-
port genomic and personalized medicine47,48.

There exist an acute lack of education of both
the physicians and the patients regarding PGs and
personalized care. The current knowledge of
healthcare professionals regarding PGs is still low,
and school curricula are only slowly including
teaching of this subject in their courses49,50. Even
when included, the depth of teaching may be lim-
ited51. PG knowledge is rapidly developing and
changing, and it is imperative that healthcare pro-
fessionals keep abreast of the advances and clini-
cal indications. 

Unfortunately, many have perceived notions
that toxicity such as neutropenia can be easily
managed, especially with advances in supportive
care such as granulocyte colony stimulating fac-
tors. The large number of chemotherapeutic op-
tions available also means that physicians are often
spoilt for choice, and have a low threshold to con-
sider alternative therapies when toxicity becomes
unmanageable. The need to evaluate the genetic
basis for side effects becomes less clinically rele-
vant in such circumstances. 

However, it is often forgotten that genetic test-
ing does not only predict for treatment related tox-
icity or allow for dose adjustment, and that it also
determines response or lack thereof. It is fre-
quently imperative that testing is done before treat-
ment, as giving inappropriate treatment may result
in an outcome poorer than the alternative. Patients
who are EGFR wild types had a poorer outcome
when treated with gefitinib12. A ‘treat-and-see’ ap-
proach has ethical and legal implications in this era
where genetic testing is readily available, as it de-
lays and even potentially deprives patients of ap-
propriate treatment, and deterioration is often rapid
without it.

These newer approaches serve as paradigmatic
examples of the enrichment model, and this strat-
egy is likely to be increasingly employed in this
era of targeted and personalized medicine.

With increasing knowledge and understanding
of the human genome, the clinical relevance of
PGs in oncology will improve, especially with
more validation studies and lowering costs of test-
ing52. Several obstacles still exist before PGs can
be fully adopted, for institutions, clinicians and pa-
tients. As more genetic and somatic information
become easily accessible and available, we will be
one step closer to making personalized medicine a
reality.
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